Philipps Blog


2014/08/18  Adding Background Image to SVG Circles

Filed under:Graphics,Tooling,UI — Philipp @ 8:03 pm

If you want to create nifty Graphics and Animation in the web, you cannot avoid d3.js. D3.js uses SVG as the basic Displaying Technologie. And sometimes you know, why SVG had such a hard time persuading developers.

It is a simple task:
Creating a Circle with an image as a background. The everyday Web-Developer would just create a Circle Element and would try to add the Background Image via CSS.
But that did not work at all.
After asking friend Google for a while, i found the answer to this question over at stackoverflow.
So you need SVG patterns (never heard about them before). And reference the image-pattern via the ID.

So here is a brief example:


<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ev="http://www.w3.org/2001/xml-events" width="400" height="400">
    <defs>
        <pattern id="image" x="-32" y="-32" patternUnits="userSpaceOnUse" height="64" width="64">
            <image x="0" y="0" height="64" width="64" xlink:href="http://0.gravatar.com/avatar/902a4faaa4de6f6aebd6fd7a9fbab46a?s=64"/>
        </pattern>
    </defs>
    <line class="link" style="stroke: #9ecae1; stroke-width: 1;" x1="200" y1="0" x2="200" y2="400"/>
    <text dy=".35em" transform="translate(0 , 190)">0,200</text>
    <line class="link" style="stroke: #9ecae1; stroke-width: 1;" y1="200" x1="0" y2="200" x2="400"/>
    <text dy=".35em" transform="translate(200 , 10)">200,0</text>
    <circle id="top" transform="translate(200,200)" r="32" fill="url(#image)"/>
</svg>

test

We used that in our small project GitHubble (you may find the sources here).

2014/08/03  Disable GitHub Image Cache for CI Build Badges

Filed under:Build — Philipp @ 11:25 am

Since some time, GitHub caches Images, that are linked in Wiki-Pages or Readme files.
That’s not optimal, when you want to display current states (e.g. the Build Status of your CI Job).

To disable the Caching for a specific Image, you need to configure a proper Caching Header.
So before the Changes, you have:

$ curl -L -I https://consolving.de/jenkins/buildStatus/icon?job=de.consolving.chatlogconverter
    HTTP/1.1 200 OK
    Date: Sun, 03 Aug 2014 10:08:44 GMT
    Server: Jetty(8.y.z-SNAPSHOT)
    ETag: /static/e5920a00/success.png
    Expires: Sun, 01 Jan 1984 00:00:00 GMT
    Content-Type: image/png
    Content-Length: 2339
    Via: 1.1 consolving.de

That means GitHub will cache the Image (for some time), although the Expires Header is set to the past.
In our case, the Jenkins CI is behind an Apache2 Server. So you need to update your Configuration.

  ...
  # Disable Cache for /jenkins/buildStatus
  <LocationMatch "/jenkins/buildStatus/icon*">
    Header set Cache-Control "no-cache"
    Header set Pragma "no-cache"
  </LocationMatch>
  ...

After that, you have now some more Caching Headers set and GitHub won’t Cache your image anymore.

$ curl -L -I https://consolving.de/jenkins/buildStatus/icon?job=de.consolving.chatlogconverter
HTTP/1.1 200 OK
Date: Sun, 03 Aug 2014 10:13:16 GMT
Server: Jetty(8.y.z-SNAPSHOT)
ETag: /static/e5920a00/success.png
Expires: Sun, 01 Jan 1984 00:00:00 GMT
Content-Type: image/png
Content-Length: 2339
Via: 1.1 consolving.de
Cache-Control: no-cache
Pragma: no-cache

2014/06/22  Writing Munin Plugins pt2: counting VPNd Connections

Filed under:Mac,Network,Perl,Tooling — Philipp @ 3:48 pm

Preamble

Every Munin Plugin should have a preamble by default:

#!/usr/bin/env perl
# -*- perl -*-

=head1 NAME

dar_vpnd a Plugin for displaying VPN Stats for the Darwin (MacOS) vpnd Service.

=head1 INTERPRETATION

The Plugin displays the number of active VPN connections.

=head1 CONFIGURATION

No Configuration necessary!

=head1 AUTHOR

Philipp Haussleiter <philipp@haussleiter.de> (email)

=head1 LICENSE

GPLv2

=cut

# MAIN
use warnings;
use strict;

As you can see, this Plugin will use Perl as the Plugin language.

After that you have some information about the Plugin Usage:

  • Name of the Plugin + some description
  • Interpretation of the delivered Data
  • Information about the Plugins Configuration (not necessary here, we will see that in the other Plugins)
  • Author Name + Contact Email
  • License

# MAIN marks the beginngin of the (main) code.

Next you see some Perl Setup, using strict Statements and also show warnings.

Gathering Data

First you should always have a basic idea how you want collect your Data (e.g. which user will use what command to get what kind of data).

For Example we can get all VPN Connections in Mac OS (Server) searching the process List for pppd processes.

ps -ef | grep ppp
    0   144     1   0  5Mär14 ??        10:35.34 vpnd -x -i com.apple.ppp.l2tp
    0 29881   144   0  4:12pm ??         0:00.04 pppd serverid com.apple.ppp.l2tp nodetach proxyarp plugin L2TP.ppp ms-dns 10.XXX.YYY.1 debug logfile /var/log/ppp/vpnd.log idle 7200 noidlesend lcp-echo-interval 60 lcp-echo-failure 5 mru 1500 mtu 1280 receive-all ip-src-address-filter 1 novj noccp intercept-dhcp require-mschap-v2 plugin DSAuth.ppp plugin2 DSACL.ppp l2tpmode answer :10.XXX.YYY.233
    0 22567   144   0  4:12pm ??         0:00.04 pppd serverid com.apple.ppp.l2tp nodetach proxyarp plugin L2TP.ppp ms-dns 10.XXX.YYY.1 debug logfile /var/log/ppp/vpnd.log idle 7200 noidlesend lcp-echo-interval 60 lcp-echo-failure 5 mru 1500 mtu 1080 receive-all ip-src-address-filter 1 novj noccp intercept-dhcp require-mschap-v2 plugin DSAuth.ppp plugin2 DSACL.ppp l2tpmode answer :10.XXX.YYY.234    

Collecting only the IP you need some more RegExp using awk:

ps -ef | awk '/[p]ppd/ {print substr($NF,2);}'
10.XXX.YYY.233
10.XXX.YYY.234

We are only interested in the total Connection Count. So we use wc for counting all IPs:

ps -ef | awk '/[p]ppd/ {print substr($NF,2);}' | wc -l
       2

So we now have a basic command that gives us the Count of currentyl connected users.

Configuration

The next thing is how your Data should be handled by the Munin System.
Your Plugin needs to provide Information about the Field Setup.

The most basic (Perl) Code looks like this:

if ( exists $ARGV[0] and $ARGV[0] eq "config" ) {
    # Config Output
    print "...";    
} else {
    # Data Output
    print "...";
}

For a more Information about fieldnames, please follow the above Link.

Our Plugin Source looks like this:

# MAIN
use warnings;
use strict;


my $cmd = "ps -ef | awk '/[p]ppd/ {print substr(\$NF,2);}' | wc -l";

if ( exists $ARGV[0] and $ARGV[0] eq "config" ) {
    print "graph_category VPN\n";
    print "graph_args --base 1024 -r --lower-limit 0\n";    
    print "graph_title Number of VPN Connections\n";
    print "graph_vlabel VPN Connections\n";
    print "graph_info The Graph shows the Number of VPN Connections\n"; 
    print "connections.label Number of VPN Connections\n";
    print "connections.type GAUGE\n";   
} else {
    my $output = `$cmd`;
    print "connections.value $output";
}

Implementation

To test the Plugin you can use munin-run:

> /opt/local/sbin/munin-run dar_vpnd config
graph_category VPN
graph_args --base 1024 -r --lower-limit 0
graph_title Number of VPN Connections
graph_vlabel VPN Connections
graph_info The Graph shows the Number of VPN Connections
connections.label Number of VPN Connections
connections.type GAUGE
> /opt/local/sbin/munin-run dar_vpnd
connections.value        1

Example Graphs

Some basic (long time) Graphs look like this:

munin_vpnd_connections_macos

  Writing Munin Plugins pt1: Overview

Filed under:Bash,Mac,Network — Philipp @ 3:11 pm

Writing your own Munin Plugins

Around February this year, we at innoQ had the need for setting up a Mac OS based CI for a Project. Besides building of integrating some standard Java Software, we also had to setup an Test Environment with Solaris/Weblogic, Mac OS for doing a CI for an iOS Application and a Linux System that contains the Jenkins CI itself.
Additionally the whole Setup should be reachable via VPN (also the iOS Application itself should be able to reach the Ressources via VPN).

To have the least possible obsticles in Setting up the iOS CI and the iOS (iPad) VPN Access, we decide to use Mac OS Server as the Basic Host OS. As the Need for Resources are somehow limited for the other Systems (Solaris/Weblogic, Linux/Jenkins), we also decide to do a basic VM Setup with VMWare Fusion.

Since we have a decent Munin Monitoring Setup in our Company for all our Systems, we need some Monitoring for all Services used in our Setup:

Beside the Standard Plugins (like Network/CPU/RAM/Disk) that was basically

  • Jenkins CI
  • VMware Fusion
  • VPN

After searching through the Munin Plugin Repository we couldn’t find any plugins providing the necessary monitoring. So the only choice was to write your own set of plugins. Since all three Plugins use different Approaches for collecting the Data, i plan two writer three different posts here. One for each Plugin. The Sources are availible online here and might be added to the main Munin Repo as soon as the Pull Requests are accepted.

How Munin works

But first a brief overview of Munin. Munin is a TCP based Service that has normally one Master and one Node for each System that needs to be monitored. The Master Node ask all Nodes periodicly for Monitoring Updates.
The Node Service, delivering the Updated Data runs on Port 4949 per default. To add some level of security, you normal add a IP to a whitelist, that is allowed to query the Nodes Data.

You can use normal telnet for accessing the Nodes Data:

telnet localhost 4949
Trying ::1...
telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
# munin node at amun

Every Node delivers Information about specific Services provided by Plugins. To get an overview about the configured plugins you do a:

# munin node at amun
list
df df_inode fusion_mem fusion_pcpu fusion_pmem if_en0 if_err_en0 load lpstat netstat ntp_offset processes users

A Plugin always provides a Configuration Output and a Data Output. By Default if you query a Plugin, you will always get the Data Output:

# munin node at amun
df
_dev_disk1s2.value 34
_dev_disk0s1.value 48
_dev_disk3s2.value 62
_dev_disk2s1.value 6
_dev_disk2s2.value 32

To trigger the Config Output you need to add a config to your command:

# munin node at amun
df config
graph_title Filesystem usage (in %)
graph_args --upper-limit 100 -l 0
graph_vlabel %
graph_scale no
_dev_disk0s1.label /Volumes/Untitled
_dev_disk1s2.label /
_dev_disk2s1.label /Volumes/System-reserviert
_dev_disk2s2.label /Volumes/Windows 7
_dev_disk3s2.label /Volumes/Data

You can also use the tool munin-run for doing a basic test (it will be installed when installing your munin-node Binary)

 munin-run df
_dev_disk1s2.value 34
_dev_disk0s1.value 48
_dev_disk3s2.value 62
_dev_disk2s1.value 6
_dev_disk2s2.value 32
munin-run df config
graph_title Filesystem usage (in %)
graph_args --upper-limit 100 -l 0
graph_vlabel %
graph_scale no
_dev_disk0s1.label /Volumes/Untitled
_dev_disk1s2.label /
_dev_disk2s1.label /Volumes/System-reserviert
_dev_disk2s2.label /Volumes/Windows 7
_dev_disk3s2.label /Volumes/Data

Summary

So a Plugin needs to provide an Output both modes:

  • Configuration Output when run with the config argument
  • The (normal) Data Output when called withouth additional arguments

Plugins are Shell Scripts that can be written in every Programming language that is supported by the Nodes Shell (e.g. Bash, Perl, Python, etc.)

Since it is one of the easier Plugins we will have a look at the Plugin, monitoring the VPN Connections at our Mac OS Server in the next Post.

2014/03/28  Creating encrypted Volumes on ZFS Pools

Filed under:Hacking,ZFS — Philipp @ 8:21 pm

One of the most anticipated Features of ZFS is transparent Encryption. But since Oracle decided to do not make updates from Solaris 11 availible as Open Source, the Feature of on-Disk Encryption is not availible on Illumos (e.g. Open-Source) based Distributions. But there are some ways to create transparent encrypted ZPools with current avaiblibe ZFS Version using pktool, lofiadm, zfs and zpool.

lofiadm- administer files available as block devices through lofi

http://www.unix.com/man-page/opensolaris/1m/lofiadm

That means, you can use normal Files as Block Devices while adding some Features to them (e.g. compression and also encryption). The Goal of this Post is to create a transparent encrypted Volume, that uses a Key-File for deryption (that might be stored on an usb stick or will be uploaded via a Browser once to mount the device). For an easy Start, i created a Vagrant File based on OmniOS here.

If you do not know Vagrant, here is an easy Start for you:

  1. Get yourself a VirtualBox Version matching your Platform: https://www.virtualbox.org/wiki/Downloads
  2. Get yourself a Vagrant Version matching your Platform: http://www.vagrantup.com/downloads.html
  3. Move to the Folder where you have saved your Vagrantfile
  4. Start your Box (will need some time, since the OmniOS Box will needs to be downloaded first)
    vagrant up
  5. After your box is finished, you can ssh into it with
    vagrant ssh
  6. Have a look around:
    zpool status

    You will find exactly one (Root-) Pool configured in that system:

      pool: rpool
     state: ONLINE
      scan: none requested
    config:
    
            NAME        STATE     READ WRITE CKSUM
            rpool       ONLINE       0     0     0
              c1d0s0    ONLINE       0     0     0

Next we want to create our encrypted Device, for that we need some “files” for using them with lofiadm. One very handy feature of ZFS is the possibility to also create Volumes (ZVols) in your ZPool.
First we need to finde out how big our Pool is:

zpool list

will give us an overview of the configured Volumes and File Systems:

NAME           SIZE  ALLOC   FREE  EXPANDSZ    CAP  DEDUP  HEALTH  ALTROOT
rpool         39,8G  2,28G  37,5G         -     5%  1.00x  ONLINE  -
vagrant-priv      -      -      -         -      -      -  FAULTED  -

So we have roughly around 37G free space. For this Test we would like to create an encrypted Volume with 2G of Space.
Creating a ZVol is as easy as creating a normal ZFS Folder:

sudo zfs create -V 2G rpool/export/home/vagrant-priv

You can now see the new ZVol with the reserved size of 2G:

zfs list
NAME                             USED  AVAIL  REFER  MOUNTPOINT
rpool                           5,34G  33,8G  35,5K  /rpool
rpool/ROOT                      1,74G  33,8G    31K  legacy
rpool/ROOT/omnios               1,74G  33,8G  1,46G  /
rpool/ROOT/omniosvar              31K  33,8G    31K  legacy
rpool/dump                       512M  33,8G   512M  -
rpool/export                    2,06G  33,8G    32K  /export
rpool/export/home               2,06G  33,8G    41K  /export/home
rpool/export/home/vagrant-priv  2,06G  35,9G    16K  -
rpool/swap                      1,03G  34,8G  34,4M  -

Next we need a Key for en-/de-crypting the Device. That can be done with the pktool:

> pktool genkey keystore=file outkey=lofi.key keytype=aes keylen=256 print=y
< Key Value ="93af08fcfa9fc89724b5ee33dc244f219ac6ce75d73df2cb1442dc4cd12ad1c4"

We can now use this key with lofiadm to create an encrypted Device:

> sudo lofiadm -a /dev/zvol/rdsk/rpool/export/home/vagrant-priv -c aes-256-cbc -k lofi.key
< /dev/lofi/1

lofi.key is the File that contains the Key for the Encryption. You can keep it in that folder or move it to another device. If you want to reactivate the device (we will see later how to do this), you will need that key file again.
/dev/lofi/1 is our encrypted Device. We can use that for creating a new (encrypted) ZPool:

sudo zpool create vagrant-priv /dev/lofi/1

You know can use that Pool as a normal ZPool (including Quotas/Compression, etc.)

> zpool status

< pool: vagrant-priv
 state: ONLINE
  scan: none requested
config:

        NAME           STATE     READ WRITE CKSUM
        vagrant-priv   ONLINE       0     0     0
          /dev/lofi/1  ONLINE       0     0     0

errors: No known data errors

You should change the Folder permissions of that mount-point:

sudo chown -R vagrant:other vagrant-priv

Creating some Test-Files:

cd /vagrant-priv/
mkfile 100m file2
> du -sh *
< 100M   file2

So what happens if we want to deactivate that Pool?

  1. Leave the Mount-Point:
    cd /
  2. Deactivate the Pool:
    sudo zpool export vagrant-priv
  3. Deactivate the Lofi Device:
    sudo lofiadm -d /dev/lofi/1

That’s all. Now let’s reboot the system and let us see how we can re-attach that Pool again.

Leave the Vagrant Box:

> exit
< logout
< Connection to 127.0.0.1 closed.

Restart the Box:

> vagrant halt
< [default] Attempting graceful shutdown of VM...
> vagrant up
...
< Waiting for machine to boot. This may take a few minutes...
< [default] VM already provisioned. Run `vagrant provision` or use `--provision` to force it

Re-Enter the Box:

vagrant ssh

So where is our Pool?

zpool status

Only gives us the default root-Pool.
First we need to re-create our Lofi-Device:

> sudo lofiadm -a /dev/zvol/rdsk/rpool/export/home/vagrant-priv -c aes-256-cbc -k lofi.key
< /dev/lofi/1

Instead of creating a new ZPool (that would delete our previous created Data), we need to import that ZPool. That’s can be done in two steps, using zpool. First we need to find our Pool:

sudo zpool import -d /dev/lofi/

That lists all ZPools, that are on Devices in that Directory. We need to find the id of “our” Pool (that needs to be done once, since that id stays the same, as long as the Pool exitsts).

...   
   pool: vagrant-priv
     id: 1140053612317909839
  state: ONLINE
 action: The pool can be imported using its name or numeric identifier.
 config:

        vagrant-priv   ONLINE
          /dev/lofi/1  ONLINE
...

We can now import that ZPool using the id 1140053612317909839:

sudo zpool import -d  /dev/lofi/ 1140053612317909839

After that we can again access our Pool as usual:

> cd /vagrant-priv/
> du -sh *
< 100M   file2

2014/02/09  Managing Mac OS Software with Munki and Subversion

Filed under:Mac,Tech — Philipp @ 9:08 pm

At the Lisa ’13, some folks from Google did a talk how they managing all their Desktop (and Server?) Macs at Google. Besides obvious things (like using Puppet), they mentioned another Tool, Munki, for rolling out Software and Software Updates to different Clients. Since i am using several Mac Machines (Laptop, Workstation and some VMs) that used to have a quite similar Software Stack, i decided to give Munki a try. Instead of using a dedicated Webserver, i decided to go with a Subversion Repository, for having User Authentication and Versioning at the Backend.

Munki uses some concepts for organising its stuff:

  • catalogs: these are basically the Listings of Applications. Each Catalog contains some Applications to be installed.
  • manifests: these are configurations for the specific client setups – e.g. Java-Dev. You can combine several Manifest Files while including one in another. You can also define mandatory and optional Packages here.
  • pkgs: here are the basic DMG/PGK Packages stored. All Filenames are unique so you can have several Versions of one Program in one Repository.
  • pkgsinfo: Here the Basic Application Info is stored. You can have Dependencies between Packages, as well as Requirements for installing Packages.

There is an excellent Starting Guide here and a description for a Demo-Setup, how to setup a basic Munki Installation. So i won’t repeat it here.

pkgs and pkgsinfo can be strcutured into sub-folders.
My actuals setup looks like this:

> tree -L 2
.
├── catalogs
│   ├── all
│   └── testing
├── manifests
│   ├── developer_munki_client
│   └── test_munki_client
├── pkgs
│   ├── dev
│   ├── media
│   ├── utils
│   └── work
└── pkgsinfo
    ├── dev
    ├── media
    ├── utils
    └── work

So you basically configure your munki-client towards

bash-3.2$ /usr/local/munki/munkiimport --configure
Path to munki repo (example: /Users/philipp/munki  
Repo fileshare URL (example:  afp://munki.example.com/repo): https://example.com/svn/munki
pkginfo extension (Example: .plist): 
pkginfo editor (examples: /usr/bin/vi or TextMate.app): TextMate.app 
Default catalog to use (example: testing): testing

After that you can use munkiimport ##path-to-dmg## for importing Applications to Munki. After you did the final Import, you can use a Tool like MunkiAdmin to configure your Client-Setup and Application Dependencies.

The next step is to commit your changes to a Repository (that is reachable under https://example.com/svn/munki). You need to update every change to the Munki Repository to keep all Clients actual. The last Step is to implement the HTTP Basic Auth Access to the Subversion Repository. There is a good Description for that as well. You need to update your /Library/Preferences/ManagedInstalls.plist Files – that should actually be moved to /private/var/root/Library/Preferences/ManagedInstalls.plist, since it now contains some User Credentials. To add this Credentials you should use this Command, where You need to have username:password as a Base64 encoded String.

defaults write /Library/Preferences/ManagedInstalls AdditionalHttpHeaders -array "Authorization: Basic V...Q="

2013/09/09  Plotting UNIX Processes with D3

Filed under:Graphics,Javascript — Philipp @ 7:47 pm

I created another Plot, using D3js:

PS Graph with D3

You can find all Scripts here.

I am still have to figure out how to do graph updates and add label to the nodes.

2013/09/03  Plotting UNIX Processes with DOT

Filed under:Graphics,Javascript,Tooling — Philipp @ 8:41 pm

Inspired by this Post, i started playing around with ps, nodejs and GraphViz.

After reading some ps man Pages, i found the necessary ps parameters.
For MacOS i used

ps -A -c -o pid,ppid,pcpu,comm,uid -r

For Linux i used

ps -A -o pid,ppid,pcpu,comm,uid

You then get some Output like:

    PID    PPID %CPU COMMAND           UID
      1       0  0.0 init                0
      2       1  0.0 kthreadd            0
      3       2  0.0 migration/0         0
      4       2  0.0 ksoftirqd/0         0
      5       2  0.0 migration/0         0
      6       2  0.0 watchdog/0          0

So you are getting the ProcessID, the Parent ProcessID, CPU Usage (i am not using for plotting atm), the Command and the UserID.
I created a simple Node Script, that you can run either directly under MacOS (for all other Unices you need to update the ps command).
Or you can give the script a previous generated ps output for parsing:

plotPS.sh /tmp/host.log > /tmp/host.dot

The resulting DOT Code is then Piped into a DOT File.

Here are some examples:

My MacOS Laptop:

MacBook Pro

bigger

A Sinlge Linux Host with Dovecot and Apache2/Passenger:

Apache2 / Mail Server

bigger

A Linux Host with OpenVZ and KVM Instances:

OpenVZ / KVM Host

bigger

In the original Post, there were also Dependencies between CPU Usage and Size of the Graphical Nodes, also it would be more useful to only plotting the processes of one VM from its inside.
But i guess for one evening the result is okay :-).

2013/08/04  Build and Test Project TOX under MacOS

Filed under:Build,Hacking,Network,Tooling — Philipp @ 3:43 pm

Some Steps to do

  1. You need to have XCode with installed CLI Tools (see here)
  2. If you are using MacPorts (you really should), you need to install all necessary Dependencies:
    port install libtool automake autoconf libconfig-hr libsodium cmake
  3. Checkout the Project TOX Core Repository:
    git clone --recursive https://github.com/irungentoo/ProjectTox-Core.git
  4. cd ProjectTox-Core
    cmake .
    make all
  5. You need two tools:
    DHT_bootstrap in /other
    and nTox in /testing
  6. Bootstrap Tox (aka get your Public Key):
    ./DHT_bootstrap
    Keys saved successfully
    Public key: EA7D7BD2566A208F83F81F8876DE6C1BDC1F8CA1788300296E5D4F4CB142CD77
    Port: 33445

    The key is also in PUBLIC_ID.txt in the same Directory.

  7. Run nTox like so:
    ./ntox 198.46.136.167 33445 728925473812C7AAC482BE7250BCCAD0B8CB9F737BF3D42ABD34459C1768F854

    Where:

    Some Tox Node
    198.46.136.167
    Port of that TOX Node
    33445
    Public Key of that TOX Node
    728925473812C7AAC482BE7250BCCAD0B8CB9F737BF3D42ABD34459C1768F854
  8. Et voilà:
    /h for list of commands
    [i] ID: C759C4FC6511CEED3EC846C0921229CA909F37CAA2DCB1D8B31479C5838DF94C
    >>

    You can add a friend:

    /f ##PUBLIC_ID##

    List your friends:

    /l

    Message a friend:

    /m ##friend_list_index##  ##message##

2013/08/01  Downgrading Subversion from 1.8 to 1.7 in MacPorts

Filed under:Snippets,Tooling — Philipp @ 11:19 pm
bash-3.2# cd /tmp
bash-3.2# svn co http://svn.macports.org/repository/macports/trunk/dports/devel/subversion --revision 108493
A    subversion/files
A    subversion/files/patch-Makefile.in.diff
A    subversion/files/patch-osx_unicode_precomp.diff
A    subversion/files/config_impl.h.patch
A    subversion/files/servers.default
A    subversion/Portfile
Ausgecheckt, Revision 108493.
bash-3.2# cd subversion/
bash-3.2# port install
--->  Computing dependencies for subversion
--->  Fetching archive for subversion
--->  Attempting to fetch subversion-1.7.10_1.darwin_12.x86_64.tbz2 from http://mse.uk.packages.macports.org/sites/packages.macports.org/subversion
--->  Attempting to fetch subversion-1.7.10_1.darwin_12.x86_64.tbz2.rmd160 from http://mse.uk.packages.macports.org/sites/packages.macports.org/subversion
...
--->  Scanning binaries for linking errors: 100.0%
--->  No broken files found.
bash-3.2# port installed subversion
The following ports are currently installed:
  subversion @1.7.10_1
  subversion @1.8.1_1 (active)
bash-3.2# port activate subversion @1.7.10_1
--->  Computing dependencies for subversion
--->  Deactivating subversion @1.8.1_1
--->  Cleaning subversion
--->  Activating subversion @1.7.10_1
--->  Cleaning subversion
Older Posts »