solving Security Error while starting Java WebStart (e.g. IPMI Remote)

Most of the IPMI Systems out there still using good old Java based Remote Applications to connect to the remote console.
Sine Java 8 update 111, the MD5 singing algorithm was marked as insecure (aka disabled) by Oracale (see Relase Notes for that Release ” Restrict JARs signed with weak algorithms and keys”).
You will get an “Security Error while using MD5withRSA Signature”:


The only solution to fix this error is to have your Hardware Vendor to update the IPMI Firmware with JARs, signed with a more up to date singing algorithm. A work around is to re-enable MD5 for the time being. For that you need to get into your Browser Java Installation.
On my Mac this is in

/Library/Internet Plug-Ins/JavaAppletPlugin.plugin/Contents/Home

You need to edit lib/security/ and remove MD5 from jdk.jar.disabledAlgorithms.


jdk.jar.disabledAlgorithms=MD2, MD5, RSA keySize < 1024


jdk.jar.disabledAlgorithms=MD2, RSA keySize < 1024

Install CoreOS on Proxmox

Some words before we start…

Hello Blog, it’s been a while. I still have to deliver the last part of the Munin Plugin Development Series (Part 1, 2, 3).

Today I would like to write something about the Setup of a CoreOS Environment on Proxmox. Proxmox is a Debian based Distribution that bundles a Web UI for OpenVZ+KVM and some great Tools for Clustering and Multi-Tenancy Installations. I am using Proxmox as a Hosting Platform for some years now and I am still amazed about the stability and the way things work out so far. I plan to create another Series about things around Proxmox (e.g. Cluster Setup using Tinc/Live Migration of VMs and the overall Network Setup).

But now, let’s dive into the Topic…


VM Setup

My Proxmox Hosts uses private Networks, both for OpenVZ Containers as well as for KVM VMs.
Both private Networks have Internet Access via the Standard Linux IP Forwarding Functions.
Configuration is done via iptables, e.g. for our private KVM Network

iptables -t nat -A POSTROUTING -s -o eth0 -j SNAT --to ${EXT_IP}

Now, create a (KVM) VM in Proxmox. I picked 2 Cores and 2Gigs of RAM. Choose VirtIO for the Disk as well as the Network. This will provide much better Performance and works out of the Box, since CoreOS has build-in support for VirtIO.

The basic steps for the Setup are:


Now start you VM and open the Console:



Downlaod the CoreOS ISO

[user@proxmox]# pwd
[user@proxmox]# wget

Note your public SSH Key

[user@proxmox]# cat ~/.ssh/

becoming root

coreos ~ # sudo su - root

update the root password

coreos ~ # passwd

Setup the basic Network.

coreos ~ # ifconfig eth0 netmask up

SSH into your system

[root@cleopatra iso]# ssh root@
The authenticity of host ' (' can't be established.
RSA key fingerprint is XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX.
Are you sure you want to continue connecting (yes/no)? yes    
root@'s password:
CoreOS stable (766.3.0)
Update Strategy: No Reboots  

Finish Network Configuration

coreos ~ # route add default gw
coreos ~ # echo "nameserver" > /etc/resolv.conf



Download Config Template

coreos ~ # wget

Adjust the Configuration as required

coreos ~ # cat coreos1-config-coreos.yml
hostname: "coreos1"

# include one or more SSH public keys
  - ssh-rsa XXX


    - name: systemd-networkd
      command: stop
    - name:
      runtime: true
      content:  |
    - name: systemd-networkd
      command: start
    - name: etcd2.service
      command: start
    - name: fleet.service
      command: start

Replace XXX with your public SSH Key.

Install CoreOS to /dev/vda (it is vda since VirtIO Device are mapped to vdX)

coreos ~ # coreos-install -d /dev/vda -C stable -c ~/coreos1-config-coreos.yml
Checking availability of "local-file"
Fetching user-data from datasource of type "local-file"
Downloading the signature for
2015-09-28 20:59:39 URL: [543/543] -> "/tmp/coreos-install.2oAX9KwZlj/coreos_production_image.bin.bz2.sig" [1]
Downloading, writing and verifying coreos_production_image.bin.bz2...
2015-09-28 21:00:09 URL: [195132425/195132425] -> "-" [1]
gpg: Signature made Wed Sep  2 04:32:09 2015 UTC using RSA key ID E5676EFC
gpg: key 93D2DCB4 marked as ultimately trusted
gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0  valid:   1  signed:   0  trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: Good signature from "CoreOS Buildbot (Offical Builds) <>" [ultimate]
gpg: Note: This key has expired!
Primary key fingerprint: 0412 7D0B FABE C887 1FFB  2CCE 50E0 8855 93D2 DCB4
     Subkey fingerprint: EEFA 7555 E481 D026 CC40  D8E6 A5A9 6635 E567 6EFC
Installing cloud-config...
Success! CoreOS stable 766.3.0 is installed on /dev/vda

Check your Installation

coreos ~ # mount /dev/vda9 /mnt
coreos ~ # cd /mnt/

Please keep in mind, that most of the Configuration will take place during the first boot of your new Instance.

Time for a Shutdown

coreos ~ # shutdown -h now
PolicyKit daemon disconnected from the bus.
We are no longer a registered authentication agent.
Connection to closed by remote host.
Connection to closed.    

First Boot

Start the VM again (this time it should boot from the internal disk – you can also remove the ISO File, just to be sure). Also the Node should apply the correct Network Configuration.

You should see something like this:



SSH into your new node

[root@cleopatra iso]# ssh core@

You might get this Warning:

Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
Please contact your system administrator.
Add correct host key in /root/.ssh/known_hosts to get rid of this message.
Offending RSA key in /root/.ssh/known_hosts:13
RSA host key for has changed and you have requested strict checking.
Host key verification failed

That is fine, since the CoreOS Host just changed it’s SSH Host Key. Just remove the problematic line (in this case line 13) from you /root/.ssh/known_hosts.

After that you should be fine:

[user@proxmox]# ssh core@
Last login: Tue Sep 29 08:50:48 2015 from
CoreOS stable (766.3.0)
Failed Units: 1
core@coreos1 ~ $ sudo -s
coreos1 core #

Now we need to fix the Configuration. Before that, we should create two more CoreOS Hosts to have a Cluster ready.

Writing Munin Plugins pt3: some Stats about VMWare Fusion

In a project where we had the need for VMs being capable of doing CI for Java and also doing CI for iOS Application (using XCode Build Bots), we decided to go with a Mac OS Server as the Host Platform and using VMWare Fusion as the base Virtualisation System. We had several VMs there (Windows, Solaris, Linux and Mac OS). Doing a proper Monitoring for theses VMs was not that easy. We already had a working Munin Infrastructure, but no Plugin for displaying VMWare Fusion Stats existed.

The first approach was to use the included VMTools for gathering the information, since we already used them to start/stop/restart VMs via CLI/SSH:


echo "starting VMS..."
$TOOL_PATH/vmrun -T fusion start $VM_PATH/Mac_OS_X_10.9.vmwarevm/Mac_OS_X_10.9.vmx nogui



echo "starting VMS..."
$TOOL_PATH/vmrun -T fusion stop $VM_PATH/Mac_OS_X_10.9.vmwarevm/Mac_OS_X_10.9.vmx

But it was very hard to receive the interesting Data from the Log Files (statistica data is only really supported in VMWare ESXi). So we choose the direct way, to receive the live data, using ps. So this approach is also applicable for other Applications as well.

Our goal was to get at lease three Graphs (% of used CPU, % of used Memory and physically used Memory) sorted by VM Name.

ps -A | grep vmware-vmx

provides us with a list of all running vmware processes. Since we only need specific Data, we add some more filters:

ps -A -c -o pcpu,pmem,rss=,args,comm -r | grep vmware-vmx

29,4 14,0 2341436   J2EE.vmx                                                 vmware-vmx
1,7 12,9 2164200    macos109.vmx                                             vmware-vmx
1,4 17,0 2844044    windows.vmx                                              vmware-vmx
0,7  6,0 1002784    Jenkins.vmx                                              vmware-vmx
0,0  0,0    624     grep vmware-vmx      

where this is the description (man ps) of the used columns:

  • %cpu percentage CPU usage (alias pcpu)
  • %mem percentage memory usage (alias pmem)
  • rss the real memory (resident set) size of the process (in 1024 byte units).

You might see several things: First we have our data and the Name of each VM. Second, we have to get rid of the last line, since that is our grep process. Third, we might need to do some String Operations/Number Calculation to get some valid Data at the end.

Since Perl is a good choice if you need to do some String Operations, the Plugins is written in Perl :-).

Let’s have a look.
The Config Element is quite compact (e.g. for the physical mem):

my $cmd = "ps -A -c -o pcpu,pmem,rss=,args,comm -r | grep vmware-vmx";
my $output = `$cmd`;
my @lines=split(/\n/,$output);
if( $type eq "mem" ) {
    print $base_config;
    print "graph_args --base 1024 -r --lower-limit 0\n";    
    print "graph_title absolute Memory usage per VM\n";
    print "graph_vlabel Memory usage\n";
    print "graph_info The Graph shows the absolute Memory usage per VM\n";  
    foreach my $line(@lines) {
        if( $line  =~ /(?<!grep)$/ ) {  
            my @vm = ();
            my $count = 0;
            my @array=split(/ /,$line); 
            foreach my $entry(@array) {
                if( length($entry) > 2 ){
            $vm[3] = clean_vmname($vm[3]);  
            if( $vm[3] =~ /(?<!comm)$/) {           
                if( $lcount > 0 ){
                    print "$vm[3]_mem.draw STACK\n";
                } else {
                    print "$vm[3]_mem.draw AREA\n";
                print "$vm[3]_mem.label $vm[3]\n";
                print "$vm[3]_mem.type GAUGE\n";            

After the basic Setup (Category, Graph Type, Labels, etc. ) we go through each line of the output from the ps command, filtering the line containing grep.
We use the stacked Graph Method, so the first entry has to be the base Graph, the following ones will just be layer on top of the first. To get clean VM Names, we have a quite simple function clean_vmname:

sub clean_vmname {
    my $vm_name = $_[0];
    $vm_name =~ s/\.vmx//;
    $vm_name =~ s/\./\_/g;
    return $vm_name;

The Code, that delivers the Data looks similar. We just piping the values from the ps command to the output:

foreach my $line(@lines) {
    if( $line  =~ /(?<!grep)$/ ) {
        my @vm = ();
        my $count = 0;
        my @array=split(/ /,$line); 
        foreach my $entry(@array) {
            if( length($entry) > 2 ){
        $vm[3] = clean_vmname($vm[3]);
        if( $vm[3] =~ /(?<!comm)$/) {   
            if( $type eq "pcpu" ) {
                print "$vm[3]_pcpu.value $vm[0]\n";
            if( $type eq "pmem" ) {
                print "$vm[3]_pmem.value $vm[1]\n";
            if( $type eq "mem" ) {
                my $value =  ($vm[2]*1024);
                print "$vm[3]_mem.value $value\n";

You can find the whole plugin here on GitHub.

Here are some example Graphs you will get as a result:


fusion_mem-month fusion_pcpu-month fusion_pmem-month

Adding Background Image to SVG Circles

If you want to create nifty Graphics and Animation in the web, you cannot avoid d3.js. D3.js uses SVG as the basic Displaying Technologie. And sometimes you know, why SVG had such a hard time persuading developers.

It is a simple task:
Creating a Circle with an image as a background. The everyday Web-Developer would just create a Circle Element and would try to add the Background Image via CSS.
But that did not work at all.
After asking friend Google for a while, i found the answer to this question over at stackoverflow.
So you need SVG patterns (never heard about them before). And reference the image-pattern via the ID.

So here is a brief example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "">

<svg xmlns="" xmlns:xlink="" xmlns:ev="" width="400" height="400">
        <pattern id="image" x="-32" y="-32" patternUnits="userSpaceOnUse" height="64" width="64">
            <image x="0" y="0" height="64" width="64" xlink:href=""/>
    <line class="link" style="stroke: #9ecae1; stroke-width: 1;" x1="200" y1="0" x2="200" y2="400"/>
    <text dy=".35em" transform="translate(0 , 190)">0,200</text>
    <line class="link" style="stroke: #9ecae1; stroke-width: 1;" y1="200" x1="0" y2="200" x2="400"/>
    <text dy=".35em" transform="translate(200 , 10)">200,0</text>
    <circle id="top" transform="translate(200,200)" r="32" fill="url(#image)"/>


We used that in our small project GitHubble (you may find the sources here).

Disable GitHub Image Cache for CI Build Badges

Since some time, GitHub caches Images, that are linked in Wiki-Pages or Readme files.
That’s not optimal, when you want to display current states (e.g. the Build Status of your CI Job).

To disable the Caching for a specific Image, you need to configure a proper Caching Header.
So before the Changes, you have:

$ curl -L -I
    HTTP/1.1 200 OK
    Date: Sun, 03 Aug 2014 10:08:44 GMT
    Server: Jetty(8.y.z-SNAPSHOT)
    ETag: /static/e5920a00/success.png
    Expires: Sun, 01 Jan 1984 00:00:00 GMT
    Content-Type: image/png
    Content-Length: 2339
    Via: 1.1

That means GitHub will cache the Image (for some time), although the Expires Header is set to the past.
In our case, the Jenkins CI is behind an Apache2 Server. So you need to update your Configuration.

  # Disable Cache for /jenkins/buildStatus
  <LocationMatch "/jenkins/buildStatus/icon*">
    Header set Cache-Control "no-cache"
    Header set Pragma "no-cache"

After that, you have now some more Caching Headers set and GitHub won’t Cache your image anymore.

$ curl -L -I
HTTP/1.1 200 OK
Date: Sun, 03 Aug 2014 10:13:16 GMT
Server: Jetty(8.y.z-SNAPSHOT)
ETag: /static/e5920a00/success.png
Expires: Sun, 01 Jan 1984 00:00:00 GMT
Content-Type: image/png
Content-Length: 2339
Via: 1.1
Cache-Control: no-cache
Pragma: no-cache

Writing Munin Plugins pt2: counting VPNd Connections


Every Munin Plugin should have a preamble by default:

#!/usr/bin/env perl
# -*- perl -*-

=head1 NAME

dar_vpnd a Plugin for displaying VPN Stats for the Darwin (MacOS) vpnd Service.


The Plugin displays the number of active VPN connections.


No Configuration necessary!

=head1 AUTHOR

Philipp Haussleiter <> (email)

=head1 LICENSE



use warnings;
use strict;

As you can see, this Plugin will use Perl as the Plugin language.

After that you have some information about the Plugin Usage:

  • Name of the Plugin + some description
  • Interpretation of the delivered Data
  • Information about the Plugins Configuration (not necessary here, we will see that in the other Plugins)
  • Author Name + Contact Email
  • License

# MAIN marks the beginngin of the (main) code.

Next you see some Perl Setup, using strict Statements and also show warnings.

Gathering Data

First you should always have a basic idea how you want collect your Data (e.g. which user will use what command to get what kind of data).

For Example we can get all VPN Connections in Mac OS (Server) searching the process List for pppd processes.

ps -ef | grep ppp
    0   144     1   0  5Mär14 ??        10:35.34 vpnd -x -i
    0 29881   144   0  4:12pm ??         0:00.04 pppd serverid nodetach proxyarp plugin L2TP.ppp ms-dns 10.XXX.YYY.1 debug logfile /var/log/ppp/vpnd.log idle 7200 noidlesend lcp-echo-interval 60 lcp-echo-failure 5 mru 1500 mtu 1280 receive-all ip-src-address-filter 1 novj noccp intercept-dhcp require-mschap-v2 plugin DSAuth.ppp plugin2 DSACL.ppp l2tpmode answer :10.XXX.YYY.233
    0 22567   144   0  4:12pm ??         0:00.04 pppd serverid nodetach proxyarp plugin L2TP.ppp ms-dns 10.XXX.YYY.1 debug logfile /var/log/ppp/vpnd.log idle 7200 noidlesend lcp-echo-interval 60 lcp-echo-failure 5 mru 1500 mtu 1080 receive-all ip-src-address-filter 1 novj noccp intercept-dhcp require-mschap-v2 plugin DSAuth.ppp plugin2 DSACL.ppp l2tpmode answer :10.XXX.YYY.234    

Collecting only the IP you need some more RegExp using awk:

ps -ef | awk '/[p]ppd/ {print substr($NF,2);}'

We are only interested in the total Connection Count. So we use wc for counting all IPs:

ps -ef | awk '/[p]ppd/ {print substr($NF,2);}' | wc -l

So we now have a basic command that gives us the Count of currentyl connected users.


The next thing is how your Data should be handled by the Munin System.
Your Plugin needs to provide Information about the Field Setup.

The most basic (Perl) Code looks like this:

if ( exists $ARGV[0] and $ARGV[0] eq "config" ) {
    # Config Output
    print "...";    
} else {
    # Data Output
    print "...";

For a more Information about fieldnames, please follow the above Link.

Our Plugin Source looks like this:

use warnings;
use strict;

my $cmd = "ps -ef | awk '/[p]ppd/ {print substr(\$NF,2);}' | wc -l";

if ( exists $ARGV[0] and $ARGV[0] eq "config" ) {
    print "graph_category VPN\n";
    print "graph_args --base 1024 -r --lower-limit 0\n";    
    print "graph_title Number of VPN Connections\n";
    print "graph_vlabel VPN Connections\n";
    print "graph_info The Graph shows the Number of VPN Connections\n"; 
    print "connections.label Number of VPN Connections\n";
    print "connections.type GAUGE\n";   
} else {
    my $output = `$cmd`;
    print "connections.value $output";


To test the Plugin you can use munin-run:

> /opt/local/sbin/munin-run dar_vpnd config
graph_category VPN
graph_args --base 1024 -r --lower-limit 0
graph_title Number of VPN Connections
graph_vlabel VPN Connections
graph_info The Graph shows the Number of VPN Connections
connections.label Number of VPN Connections
connections.type GAUGE
> /opt/local/sbin/munin-run dar_vpnd
connections.value        1

Example Graphs

Some basic (long time) Graphs look like this:


Writing Munin Plugins pt1: Overview

Writing your own Munin Plugins

Around February this year, we at innoQ had the need for setting up a Mac OS based CI for a Project. Besides building of integrating some standard Java Software, we also had to setup an Test Environment with Solaris/Weblogic, Mac OS for doing a CI for an iOS Application and a Linux System that contains the Jenkins CI itself.
Additionally the whole Setup should be reachable via VPN (also the iOS Application itself should be able to reach the Ressources via VPN).

To have the least possible obsticles in Setting up the iOS CI and the iOS (iPad) VPN Access, we decide to use Mac OS Server as the Basic Host OS. As the Need for Resources are somehow limited for the other Systems (Solaris/Weblogic, Linux/Jenkins), we also decide to do a basic VM Setup with VMWare Fusion.

Since we have a decent Munin Monitoring Setup in our Company for all our Systems, we need some Monitoring for all Services used in our Setup:

Beside the Standard Plugins (like Network/CPU/RAM/Disk) that was basically

  • Jenkins CI
  • VMware Fusion
  • VPN

After searching through the Munin Plugin Repository we couldn’t find any plugins providing the necessary monitoring. So the only choice was to write your own set of plugins. Since all three Plugins use different Approaches for collecting the Data, i plan two writer three different posts here. One for each Plugin. The Sources are availible online here and might be added to the main Munin Repo as soon as the Pull Requests are accepted.

How Munin works

But first a brief overview of Munin. Munin is a TCP based Service that has normally one Master and one Node for each System that needs to be monitored. The Master Node ask all Nodes periodicly for Monitoring Updates.
The Node Service, delivering the Updated Data runs on Port 4949 per default. To add some level of security, you normal add a IP to a whitelist, that is allowed to query the Nodes Data.

You can use normal telnet for accessing the Nodes Data:

telnet localhost 4949
Trying ::1...
telnet: connect to address ::1: Connection refused
Connected to localhost.
Escape character is '^]'.
# munin node at amun

Every Node delivers Information about specific Services provided by Plugins. To get an overview about the configured plugins you do a:

# munin node at amun
df df_inode fusion_mem fusion_pcpu fusion_pmem if_en0 if_err_en0 load lpstat netstat ntp_offset processes users

A Plugin always provides a Configuration Output and a Data Output. By Default if you query a Plugin, you will always get the Data Output:

# munin node at amun
_dev_disk1s2.value 34
_dev_disk0s1.value 48
_dev_disk3s2.value 62
_dev_disk2s1.value 6
_dev_disk2s2.value 32

To trigger the Config Output you need to add a config to your command:

# munin node at amun
df config
graph_title Filesystem usage (in %)
graph_args --upper-limit 100 -l 0
graph_vlabel %
graph_scale no
_dev_disk0s1.label /Volumes/Untitled
_dev_disk1s2.label /
_dev_disk2s1.label /Volumes/System-reserviert
_dev_disk2s2.label /Volumes/Windows 7
_dev_disk3s2.label /Volumes/Data

You can also use the tool munin-run for doing a basic test (it will be installed when installing your munin-node Binary)

 munin-run df
_dev_disk1s2.value 34
_dev_disk0s1.value 48
_dev_disk3s2.value 62
_dev_disk2s1.value 6
_dev_disk2s2.value 32
munin-run df config
graph_title Filesystem usage (in %)
graph_args --upper-limit 100 -l 0
graph_vlabel %
graph_scale no
_dev_disk0s1.label /Volumes/Untitled
_dev_disk1s2.label /
_dev_disk2s1.label /Volumes/System-reserviert
_dev_disk2s2.label /Volumes/Windows 7
_dev_disk3s2.label /Volumes/Data


So a Plugin needs to provide an Output both modes:

  • Configuration Output when run with the config argument
  • The (normal) Data Output when called withouth additional arguments

Plugins are Shell Scripts that can be written in every Programming language that is supported by the Nodes Shell (e.g. Bash, Perl, Python, etc.)

Since it is one of the easier Plugins we will have a look at the Plugin, monitoring the VPN Connections at our Mac OS Server in the next Post.

Managing Mac OS Software with Munki and Subversion

At the Lisa ’13, some folks from Google did a talk how they managing all their Desktop (and Server?) Macs at Google. Besides obvious things (like using Puppet), they mentioned another Tool, Munki, for rolling out Software and Software Updates to different Clients. Since i am using several Mac Machines (Laptop, Workstation and some VMs) that used to have a quite similar Software Stack, i decided to give Munki a try. Instead of using a dedicated Webserver, i decided to go with a Subversion Repository, for having User Authentication and Versioning at the Backend.

Munki uses some concepts for organising its stuff:

  • catalogs: these are basically the Listings of Applications. Each Catalog contains some Applications to be installed.
  • manifests: these are configurations for the specific client setups – e.g. Java-Dev. You can combine several Manifest Files while including one in another. You can also define mandatory and optional Packages here.
  • pkgs: here are the basic DMG/PGK Packages stored. All Filenames are unique so you can have several Versions of one Program in one Repository.
  • pkgsinfo: Here the Basic Application Info is stored. You can have Dependencies between Packages, as well as Requirements for installing Packages.

There is an excellent Starting Guide here and a description for a Demo-Setup, how to setup a basic Munki Installation. So i won’t repeat it here.

pkgs and pkgsinfo can be strcutured into sub-folders.
My actuals setup looks like this:

> tree -L 2
├── catalogs
│   ├── all
│   └── testing
├── manifests
│   ├── developer_munki_client
│   └── test_munki_client
├── pkgs
│   ├── dev
│   ├── media
│   ├── utils
│   └── work
└── pkgsinfo
    ├── dev
    ├── media
    ├── utils
    └── work

So you basically configure your munki-client towards

bash-3.2$ /usr/local/munki/munkiimport --configure
Path to munki repo (example: /Users/philipp/munki  
Repo fileshare URL (example:  afp://
pkginfo extension (Example: .plist): 
pkginfo editor (examples: /usr/bin/vi or 
Default catalog to use (example: testing): testing

After that you can use munkiimport ##path-to-dmg## for importing Applications to Munki. After you did the final Import, you can use a Tool like MunkiAdmin to configure your Client-Setup and Application Dependencies.

The next step is to commit your changes to a Repository (that is reachable under You need to update every change to the Munki Repository to keep all Clients actual. The last Step is to implement the HTTP Basic Auth Access to the Subversion Repository. There is a good Description for that as well. You need to update your /Library/Preferences/ManagedInstalls.plist Files – that should actually be moved to /private/var/root/Library/Preferences/ManagedInstalls.plist, since it now contains some User Credentials. To add this Credentials you should use this Command, where You need to have username:password as a Base64 encoded String.

defaults write /Library/Preferences/ManagedInstalls AdditionalHttpHeaders -array "Authorization: Basic V...Q="

Plotting UNIX Processes with DOT

Inspired by this Post, i started playing around with ps, nodejs and GraphViz.

After reading some ps man Pages, i found the necessary ps parameters.
For MacOS i used

ps -A -c -o pid,ppid,pcpu,comm,uid -r

For Linux i used

ps -A -o pid,ppid,pcpu,comm,uid

You then get some Output like:

    PID    PPID %CPU COMMAND           UID
      1       0  0.0 init                0
      2       1  0.0 kthreadd            0
      3       2  0.0 migration/0         0
      4       2  0.0 ksoftirqd/0         0
      5       2  0.0 migration/0         0
      6       2  0.0 watchdog/0          0

So you are getting the ProcessID, the Parent ProcessID, CPU Usage (i am not using for plotting atm), the Command and the UserID.
I created a simple Node Script, that you can run either directly under MacOS (for all other Unices you need to update the ps command).
Or you can give the script a previous generated ps output for parsing: /tmp/host.log > /tmp/

The resulting DOT Code is then Piped into a DOT File.

Here are some examples:

My MacOS Laptop:

MacBook Pro

A Sinlge Linux Host with Dovecot and Apache2/Passenger:

Apache2 / Mail Server

A Linux Host with OpenVZ and KVM Instances:

OpenVZ / KVM Host

In the original Post, there were also Dependencies between CPU Usage and Size of the Graphical Nodes, also it would be more useful to only plotting the processes of one VM from its inside.
But i guess for one evening the result is okay :-).